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M ti ti Motivation 

 Material and characterization methodate a a d c a acte at o et od

 Properties of as-deposited films

 Change in properties of films after ion irradiation

 Potential mechanism
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M ti tiMotivation

 Several groups reported the efficiency of grain boundaries as sinksSeveral groups reported the efficiency of grain boundaries as sinks 
for point defects is depending on grain boundary mis-orientation.

The effect of boundary mis-orientation on loop free zone 
(L.F.Z.) width in oil-quenched Al-1.5%Zn

J. Burke, et al, Phil. Mag. 31 (1975) 1063.
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M ti tiMotivation

 Several groups reported the efficiency of grain boundaries sinks forSeveral groups reported the efficiency of grain boundaries sinks for 
point defects is depending on grain boundary mis-orientation.

 The change of small angle grain boundaries after absorbing the 
point defects is not well reported and understoodpoint defects is not well reported and understood. 

 Questions: 

(1) How do small angle grain boundaries interact with irradiation(1) How do small angle grain boundaries interact with irradiation 
induced defects?

(2) Are small angle grain boundaries still effective sinks for 
irradiation produced defects? 

 Study: Interactions between interstitials and small angle grain 
boundary with mis-orientation below 1 degree.boundary with mis orientation below 1 degree. 
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M i C t lMosaic Crystal

 The notion of mosaic structure was first introduced by Darwin 
to describe the microstructure in single crystals. 

 A single crystal is made up of small perfect-crystal blocks, 
h li htl i i t t d f theach slightly mis-orientated one from another.

 Block size: the order of 100 nm and the maximum angle of 
disorientation between them from very small to one degreedisorientation between them from very small to one degree.
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C.G. Darwin, Phil. Mag. 27 (1914) 675.



M d l f i t lModel of mosaic crystal

α

 b

 Mosaic crystal is composed of sub-grain with small angle mis-orientation between

Model of mosaic crystal Sub-grain with small angle GB

 Mosaic crystal is composed of sub grain with small angle mis orientation between 
them

 Small angle grain boundaries become bridges to connect each block with its 
neighbors. The small angle grain boundary is comprised of an array of dislocations.
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M t i l d th dMaterials and methods

 Synthesis of Cu films with mosaic Synthesis of Cu films with mosaic 
structures
1. Magnetron sputtering

200nm

2. HF etched Si(110) substrate 
3. Room temperature
4 A 4 T

Si(110)

4. Ar pressure: 4 mTorr
5. Total thickness: 200 nm

 

its
)  Cu (111) thin film on Si (110)

 Characterization of Cu films
1 Rocking curve of X-ray diffraction
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1. Rocking curve of X ray diffraction 
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2. RBS analysis (Random and Channeling)
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M th d t i i d f thi filMethods to examine mosaic spread of thin film

 Method 1: Method 1: 
Rocking curve of XRD was used to measure the mosaic spread of film

 Rocking curve:
The angle (θ) and the detector position (2θ) is fixed at the Bragg angle of 
the corresponding reflection. Rocking curve is acquired by rotatingthe corresponding reflection. Rocking curve is acquired by rotating 
sample through the Bragg angle. 
Mis-orientation angle α and incidence angle θ, then diffraction at all 

l b t θ d θ+αangles between θ and θ+α

 Information from Rocking Curve:g
Full Width at Half Maximum (FWHM) of rocking curve determine the 
mean spread of mosaic crystal
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Comparison of rocking curves between Si (100) and as-
d it d C (111)/Si(110)deposited Cu(111)/Si(110)
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 Two rocking curves are over the same range of θ
C i h k b dth f Si (100) i h th th t f C (111)
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 Comparison shows peak breadth of Si (100) is much narrower than that of Cu (111), 
indicating large mosaic spread in Cu.



M th d t i i d f thi filMethods to examine mosaic spread of thin film

 Method 2: Rutherford backscattering spectrometry (RBS):  
determine the structure and composition of materials by measuring 
the backscattering of a high energy ion beam impinging on a sample. 

 RBS channeling: Strikingly large reduction in the yield of RBS channeling: Strikingly large reduction in the yield of 
backscattered particles as the orientation of the single crystal target is 
aligned with the incident beams. 

h i f h Minimum Yield: The ratio of the 
heights of two spectra taken in the 
near-surface region for aligned 

d d i t tiand random orientation
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RBS/C t f d it d C filRBS/C spectra of as-deposited Cu film
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 The random and channeling spectra of RBS measurement for as-deposited film shows 
the minimum yield of 70%, indicating mosaic crystal with small misorientations in the 
film.
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H li i i di ti i tHelium ion irradiation experiment 

 Purpose: Radiation response of mosaic structure in Cu filmPurpose: Radiation response of mosaic structure in Cu film

 Concern: He bubbles in the films (expect ultra low ratio of He bubbles to damage)

 TRIM simulation 50
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 Helium radiation: 200 keV; 5×1017 ions/cm2; room temperature.
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Rocking curves of Cu (111) in as-deposited and ion 
i di t d C (111) fil Si (110)irradiated Cu (111) film on Si (110)
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irradiation with fluence 5×1017/cm2 indicating 35% decrease of mosaic spread
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irradiation with fluence 5×10 /cm , indicating 35% decrease of mosaic spread.



RBS/C spectra of as-deposited and ion irradiated Cu 
fil ith fl 5×1017/ 2films with fluence 5×1017/cm2
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 Comparison shows minimum yield decreases 30% after ion irradiation with fluence 
5×1017/cm2, indicating 30% decrease of mosaic spread.
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1 M bilit f i t titi l d1. Mobility of interstitial and vacancy

 Diffusion coefficient of point defect: Diffusion coefficient of point defect: 

)/exp()/exp(2 kSkTEvaD mm

where alpha is a constant,  a is the lattice constant, v is frequency,  Sm is entropy, 
and Em is migration energy, for interstitial is 0.12 eV and for vacancy is 0.8 eV in 
Cu. 

Th ti f diff i ffi i t f i t titi l t i t RT The ratio of diffusion coefficient of interstitials to vacancies at RT:
2.8×1011, so at low temperature (RT), the interstitial is mobile, and the vacancy is 
immobile.
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G.S. Was, Fundamentals of radiation materials science: Metals and 
Alloys, Springer Berlin Heidelberge New York, 2007. 



2 P i t d f t t ti f d it d C fil2. Point defect concentration of as-deposited Cu film

 Equilibrium interstitial concentration in bulk Cu: )exp(0 uNN v
Equilibrium interstitial concentration in bulk Cu:

where uv is formation energy, T is temperature, so:  

Equilibrium concentration of interstitial = 7.8×10-15/cm3

)exp(
kT

NNv

Equilibrium concentration of interstitial  7.8×10 /cm

25
He ions: 200 keV
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higher than interstitial concentration in 
as-deposited film.
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3. Dislocation negative (down) climb by absorbing 
i t titi linterstitials

dis

absorbing
interstitials

slocation line

 Dislocation negative climb by absorbing interstitials under diffusion control Dislocation negative climb by absorbing interstitials under diffusion control.

 Dislocation line moves down by dislocation negative climb
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4. The creation of concentration gradient in the region 
l t di l ti

 Before irradiation: Point defects with low concentration equilibrate at 

close to dislocations

q
dislocations because dislocations can act as sources sinks for point defects in 
the as-deposited sample. The dislocations motions cease.

f After irradiation: at the start, the radiation induced interstitials uniformly 
distributed but with much higher concentrations, which is constant and 
uniform in space   

 Creation of concentration 
gradient: Much higher interstitials 
concentration breaks the balance close

Cr
Concentration right after irradiation

en
tra

tio
n

    

concentration breaks the balance close 
to dislocation. So dislocation climb by 
attracting the interstitials, which 
reduces the local concentrations of
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C l iConclusions

 As-deposited Cu film on Si substrate has a mosaic structure.As deposited Cu film on Si substrate has a mosaic structure.

 Rocking curve measurements show that He ion irradiation 
reduced FWHM.

 RBS data show a reduction in minimum yield after irradiation

 Both evidences indicated mosaic structure is improved by ion 
irradiationirradiation.

 Reduction in mosaic structure results from interstitial 
absorption at small angle grain boundaries by dislocation 
climb in mosaic structure. 

 Small angle grain boundary angle and mis-orientation angle 
decrease after ion irradiationdecrease after ion irradiation
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